首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   0篇
航空   152篇
航天技术   3篇
航天   15篇
  2021年   1篇
  2018年   69篇
  2017年   40篇
  2016年   2篇
  2015年   3篇
  2013年   4篇
  2012年   4篇
  2011年   12篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   6篇
  2000年   1篇
  1998年   1篇
  1993年   4篇
  1992年   2篇
排序方式: 共有170条查询结果,搜索用时 128 毫秒
61.
While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW. Advanced models of the SSW in coronal streamers and other structures have been developed using 3D MHD and multi-fluid equations.However, the following questions remain open: What are the source regions and their contributions to the SSW? What is the role of the magnetic topology in the corona for the origin, acceleration and energy deposition of the SSW? What are the possible acceleration and heating mechanisms for the SSW? The aim of this review is to present insights on the SSW origin and formation gathered from the discussions at the International Space Science Institute (ISSI) by the Team entitled “Slow solar wind sources and acceleration mechanisms in the corona” held in Bern (Switzerland) in March 2014 and 2015.  相似文献   
62.
The SEIS (Seismic Experiment for Interior Structures) instrument onboard the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. Here we analyse in-situ wind measurements from previous Mars space missions to understand the wind environment that we are likely to encounter on Mars, and then we use an elastic ground deformation model to evaluate the mechanical noise contributions on the SEIS instrument due to the interaction between the Martian winds and the InSight lander. Lander mechanical noise maps that will be used to select the best deployment site for SEIS once the InSight lander arrives on Mars are also presented. We find the lander mechanical noise may be a detectable signal on the InSight seismometers. However, for the baseline SEIS deployment position, the noise is expected to be below the total noise requirement \(>97~\%\) of the time and is, therefore, not expected to endanger the InSight mission objectives.  相似文献   
63.
64.
Book reviews     
The general significance of streamers of the solar corona is discussed in the frame of our knowledge of the solar wind phenomenon and the large-scale solar magnetic structure. Thermodynamical and geometric parameters of streamers observed and measured at total solar eclipses are reviewed. Both the low part (in the form of a helmet with a cusp) and the external part (in the form of a stalk extended at many solar radii) are considered. The modelling of streamers starts with the analysis of effects produced by the solar wind flow on a magnetic structure. Facts and arguments are presented in favor of a model with a current sheet and reconnection processes going on along the axis of the streamer, especially in the non-collisional part of the radially extended streamer. Further development of the Pneuman and Kopp (1971) model is discussed, including difficulties occurring in the interpretation of a stationary solution. An empirical model satisfying observations is presented. Future researchs on streamers were discussed with emphasis on observations to be done with the space-borne coronagraphs on the SOHO spacecraft.  相似文献   
65.
The presence of rocks in the ejecta of craters at the InSight landing site in southwestern Elysium Planitia indicates a strong, rock-producing unit at depth. A finer regolith above is inferred by the lack of rocks in the ejecta of 10-m-scale craters. This regolith should be penetrable by the mole of the Heat Flow and Physical Properties Package (HP3). An analysis of the size-frequency distribution (SFD) of 7988 rocky ejecta craters (RECs) across four candidate landing ellipses reveals that all craters >200 m in diameter and \({<}750 \pm 30\ \mbox{Ma}\) in age have boulder-sized rocks in their ejecta. The frequency of RECs however decreases significantly below this diameter (\(D\)), represented by a roll-off in the SFD slope. At \(30\ \text{m} < D < 200\ \text{m}\), the slope of the cumulative SFD declines to near zero at \(D < 30\ \text{m}\). Surface modification, resolution limits, or human counting error cannot account for the magnitude of this roll-off. Rather, a significant population of <200 m diameter fresh non-rocky ejecta craters (NRECs) here indicates the presence of a relatively fine-grained regolith that prevents smaller craters from excavating the strong rock-producing unit. Depth to excavation relationships and the REC size thresholds indicate the region is capped by a regolith that is almost everywhere 3 m thick but may be as thick as 12 to 18 m. The lower bound of the thickness range is independently confirmed by the depth to the inner crater in concentric or nested craters. The data indicate that 85% of the InSight landing region is covered by a regolith that is at least 3 m thick. The probability of encountering rockier material at depths >3 m by the HP3 however increases significantly due to the increase in boulder-size rocks in the lower regolith column, near the interface of the bedrock.  相似文献   
66.
This chapter gives a brief review on the theory of gamma-ray bursts (GRBs), including the models of multi-messengers (e.g., prompt multiwavelength electromagnetic emissions, high-energy neutrinos, ultra-high-energy cosmic rays, and gravitational waves) and central engines (in particular, mergers of binary neutron stars for short GRBs). For detailed reviews, please see (Piran in Phys. Rep. 314:575, 1999; Rev. Mod. Phys. 76:1143, 2004; Mészáros in Annu. Rev. Astron. Astrophys. 40:137, 2002; Rep. Prog. Phys. 69:2259, 2006; Zhang and Mészáros in Int. J. Mod. Phys. A 19:2385, 2004; Zhang in Chin. J. Astron. Astrophys. 7:1, 2007; Nakar in Phys. Rep. 442:166, 2007; Kumar and Zhang in Phys. Rep. 561:1, 2015).  相似文献   
67.
InSight Mars Lander Robotics Instrument Deployment System   总被引:1,自引:0,他引:1  
The InSight Mars Lander is equipped with an Instrument Deployment System (IDS) and science payload with accompanying auxiliary peripherals mounted on the Lander. The InSight science payload includes a seismometer (SEIS) and Wind and Thermal Shield (WTS), heat flow probe (Heat Flow and Physical Properties Package, HP3) and a precision tracking system (RISE) to measure the size and state of the core, mantle and crust of Mars. The InSight flight system is a close copy of the Mars Phoenix Lander and comprises a Lander, cruise stage, heatshield and backshell. The IDS comprises an Instrument Deployment Arm (IDA), scoop, five finger “claw” grapple, motor controller, arm-mounted Instrument Deployment Camera (IDC), lander-mounted Instrument Context Camera (ICC), and control software. IDS is responsible for the first precision robotic instrument placement and release of SEIS and HP3 on a planetary surface that will enable scientists to perform the first comprehensive surface-based geophysical investigation of Mars’ interior structure. This paper describes the design and operations of the Instrument Deployment Systems (IDS), a critical subsystem of the InSight Mars Lander necessary to achieve the primary scientific goals of the mission including robotic arm geology and physical properties (soil mechanics) investigations at the Landing site. In addition, we present test results of flight IDS Verification and Validation activities including thermal characterization and InSight 2017 Assembly, Test, and Launch Operations (ATLO), Deployment Scenario Test at Lockheed Martin, Denver, where all the flight payloads were successfully deployed with a balloon gravity offload fixture to compensate for Mars to Earth gravity.  相似文献   
68.
This work describes the interpretation of THEMIS-derived thermal inertia data at the Eberswalde, Gale, Holden, and Mawrth Vallis Mars Science Laboratory (MSL) candidate landing sites and determines how thermophysical variations correspond to morphology and, when apparent, mineralogical diversity. At Eberswalde, the proportion of likely unconsolidated material relative to exposed bedrock or highly indurated surfaces controls the thermal inertia of a given region. At Gale, the majority of the landing site region has a moderate thermal inertia (250 to 410?J?m?2?K?1?s?1/2), which is likely an indurated surface mixed with unconsolidated materials. The primary difference between higher and moderate thermal inertia surfaces may be due to the amount of mantling material present. Within the mound of stratified material in Gale, layers are distinguished in the thermal inertia data; the MSL rover could be traversing through materials that are both thermophysically and compositionally diverse. The majority of the Holden ellipse has a thermal inertia of 340 to 475?J?m?2?K?1?s?1/2 and consists of bed forms with some consolidated material intermixed. Mawrth Vallis has a mean thermal inertia of 310?J?m?2?K?1?s?1/2 and a wide variety of materials is present contributing to the moderate thermal inertia surfaces, including a mixture of bedrock, indurated surfaces, bed forms, and unconsolidated fines. Phyllosilicates have been identified at all four candidate landing sites, and these clay-bearing units typically have a similar thermal inertia value (400 to 500?J?m?2?K?1?s?1/2), suggesting physical properties that are also similar.  相似文献   
69.
The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150–450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.  相似文献   
70.
There have been many significant advances in understanding magnetic field reconnection as a result of improved space measurements and two-dimensional computer simulations. While reviews of recent work have tended to focus on symmetric reconnection on ion and larger spatial scales, the present review will focus on asymmetric reconnection and on electron scale physics involving the reconnection site, parallel electric fields, and electron acceleration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号